Abstract

The aim of this study was to determine the machinability of new silica-doped Y-TZP by CAD/CAM and the resistance to low temperature degradation of the milled sample by comparing with a commercial HIP type Y-TZP material. The copings could be milled from silica-doped Y-TZP blocks without chipping, and there was no significant difference between the two types of Y-TZP materials in either the marginal or the inner gap between the abutment and the coping. After aging, the monoclinic content in the commercial Y-TZP copings increased from 25% before testing to 65%, while that of silica-doped Y-TZP copings slightly increased from 23% to 30%. The silica-doped Y-TZP copings did not have any significant difference in fracture load in a comparison between the control group and the aging group, while the commercial Y-TZP copings had a significantly lower fracture load for the aging group than for the control group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.