Abstract

SUMMARYThe generalized Jacobian matrix was introduced for dealing with end-effector control in space robots. One of the applications of this Jacobian is to be used in Jacobian transpose control to generate joint torques given end-effector position error. It would be misleading, however, to consider the transpose of this Jacobian as a mapping from end-effector force/moment to controlled joint torques for underactuated systems or floating base robots. This paper explains why it does not represent the mapping and provides a simple example. Later, the correct mapping is provided using the dynamically consistent Jacobian inverse and then a method to compute the actuated-joint torques is explained given the desired end-effector force. Finally, the effect of using the generalized Jacobian in the Jacobian transpose control is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.