Abstract

Apoptosis is a common paradigm of cell death and plays a key role in cartilage damage and selenium (Se) deficiency. Selenoproteins play major roles in determining the biological effects of Se, and are potentially involved in the pathophysiological processes in bone tissue. MicroRNAs (miRNAs) play important roles in cell proliferation, differentiation, apoptosis and tumorigenesis. Based on the preliminary results, the expression of selenoprotein M (SelM) was significantly decreased (69%) in chicken cartilage tissues with Se deficiency, and we subsequently screened and verified that SelM is one of the target genes of miR-138-5p in chicken cartilage using a dual luciferase reporter assay and real-time quantitative PCR (qRT-PCR). The expression of miR-138-5p was increased in response to Se deficiency, and the overexpression of miR-138-5p increased caspase-3, caspase-9, BAX and BAK levels, while the BCL-2 level was decreased, suggesting that miR-138-5p induced apoptosis via the mitochondrial pathway in vivo and in vitro. We explored whether oxidative stress, mitochondrial fission and fusion, and energy metabolism might trigger apoptosis to obtain an understanding of the mechanisms underlying the effects of miR-138-5p on Se deficiency-induced apoptosis in cartilage. The levels of indicators of oxidative stress, mitochondrial dynamics and energy metabolism were changed as well. This study confirmed that SelM is one of the target genes of miR-138-5p, and the overexpression of miR-138-5p induced by Se deficiency triggered oxidative stress, an imbalance in mitochondrial fission and fusion, and energy metabolism dysfunction. Therefore, miR-138-5p is involved in the mitochondrial apoptosis pathway via targeting SelM in chicken chondrocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.