Abstract

A chimeric gene consisting of the coding sequence for the membrane domain of the endoplasmic reticulum protein, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, fused to the coding sequence for the soluble enzyme, beta-galactosidase of Escherichia coli, has been previously constructed. This fusion protein, HMGal, has been localized to the membrane of the endoplasmic reticulum of Chinese hamster ovary cells transfected with this chimeric gene, and its beta-galactosidase activity has declined in the presence of low density lipoprotein (Skalnik, D. G., Narita, H., Kent, C., and Simoni, R. D. (1988) J. Biol. Chem. 263, 6836-6841). In this report, we demonstrate that the loss of beta-galactosidase activity results from the accelerated degradation of the HMGal protein. Taking advantage of a fluorescence-activated cell sorter technique, we have selected transfected cells which express sufficient levels of HMGal to improve its immunodetection. Based on pulse-chase experiments, the half-life of HMGal is 6.0 h, and, in the presence of 20 mM mevalonate, the half-life declines 1.7-fold. Under these conditions, mevalonate accelerates the degradation of HMG-CoA reductase in these cells 1.6-fold, from 8.4 h to 5.3 h, most probably by the same mechanism. This mevalonate-regulated degradation of HMGal is not due to a heteromeric association of HMGal with reductase, since the same effect has been observed in cells lacking the reductase protein. In addition, we demonstrate that inhibition of protein synthesis with cycloheximide abolishes the mevalonate-dependent accelerated degradation of HMGal, in agreement with previous studies which have presented indirect evidence that a short-lived protein is essential for mediating the loss of HMG-CoA reductase activity. Finally, using brefeldin A, we show that the mevalonate-dependent accelerated degradation of HMGal may occur in the endoplasmic reticulum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.