Abstract
M31-RV was an extraordinarily luminous (~10^6 Lsun) eruptive variable, displaying very cool temperatures (roughly 1000 Kelvins) as it faded. The photometric behavior of M31-RV (and several other very red novae, i.e. luminous eruptive red variables) has led to several models of this apparently new class of astrophysical object. One of the most detailed models is that of "mergebursts": hypothetical mergers of close binary stars. These are predicted to rival or exceed the brightest classical novae in luminosity, but to be much cooler and redder than classical novae, and to become slowly hotter and bluer as they age. This prediction suggests two stringent and definitive tests of the mergeburst hypothesis. First, there should always be a cool red remnant, and NOT a hot blue remnant at the site of such an outburst. Second, the inflated envelope of a mergeburst event should be slowly contracting, hence it must display a slowly rising effective temperature. We have located a luminous, UV-bright object within 0.4 arcsec (1.5 sigma of the astrometric position) of M31-RV in archival WFPC2 images taken 10 years after the outburst: it resembles an old nova. Twenty years after the outburst, the object remains much too hot to be a mergeburst. Its behavior remains consistent with that of theoretical nova models which erupt on a low mass white dwarf. Future Hubble UV and visible images could determine if the M31-RV analogs (in M85 and in M99) are also behaving like old novae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.