Abstract

In the paper, by the Cauchy integral formula in the theory of complex functions, an integral representation for the reciprocal of the weighted geometric mean of many positive numbers is established. As a result, the reciprocal of the weighted geometric mean of many positive numbers is verified to be a Stieltjes function and, consequently, a (logarithmically) completely monotonic function. Finally, as applications of the integral representation, in the form of remarks, several integral formulas for a kind of improper integrals are derived, an alternative proof of the famous inequality between the weighted arithmetic and geometric means is supplied, and two explicit formulas for the large Schröder numbers are discovered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.