Abstract
The accidental fall is the major risk for elderly especially under unsupervised states. It is necessary to real-time monitor fall postures for elderly. This paper proposes the fall posture identifying scheme with wearable sensors including MPU6050 and flexible graphene/rubber. MPU6050 is located at the waist to monitor the attitude of the body with triaxial accelerometer and gyroscope. The graphene/rubber sensors are located at the knees to monitor the moving actions of the legs. A real-time fall postures identifying algorithm is proposed by the integration of triaxial accelerometer, tilt angles, and the bending angles from the graphene/rubber sensors. A volunteer is engaged to emulate elderly physical behaviors in performing four activities of daily living and six fall postures. Four basic fall down postures can be identified with MPU6050. Integrated with graphene/rubber sensors, two more fall postures are correctly identified by the proposed scheme. Test results show that the accuracy for activities of daily living detection is 93.5% and that for fall posture identifying is 90%. After the fall postures are identified, the proposed system transmits the fall posture to the smart phone carried by the elderly via Bluetooth. Finally, the posture and location are transmitted to the specified mobile phone by short message.
Highlights
With the progressive aging of population, the daily healthcare of the elderly has been in great demand
To test the flexibility and bending detection performance of the graphene/rubber sensor, Figure 6 presents the bending between 0° and 180°
This paper focuses on the elderly fall identifying, and establishes a wearable fall posture detection scheme
Summary
With the progressive aging of population, the daily healthcare of the elderly has been in great demand. One or multiple video cameras are usually installed in the elderly activity areas to determine whether the elderly
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Distributed Sensor Networks
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.