Abstract

The heat transfer and flow characteristics of a photoelectrochemical (PEC) hydrogen generation reactor are investigated numerically. Four different reactor designs are considered in this study. The solar irradiation is separated into short and long wavelength parts depending on the energy band gap of the photoelectrode used. While short wavelength part is used to generate electron and hole pairs, the long wavelength part is used to heat the system. Because the energy required for splitting water decreases as temperature is increased, heating the reactor by using the long wave energy increases the system efficiency. Thus, how the long wavelength energy is absorbed by the reactor is very important. The results show that more long wavelength energy kept inside the reactor can increase the solar-to-hydrogen efficiency, η SH. For Fe 2O 3 photoelectrode, careful reactor design can increase η SH by 11.0%. For design D under 4000 W/m 2 irradiation and a quantum efficiency of 30%, η SH is found to be 14.1% and the hydrogen volume production rate is 166 L/m 2 h for Fe 2O 3. Effects of several parameters on the PEC hydrogen reactor are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.