Abstract

The reaction of dimethyl carbonate (DMC) and diethyl carbonate (DEC) with clean metallic lithium in ultrahigh vacuum was studied by the use of X-ray photoelectron spectroscopy with the temperature-programmed reaction methodology. Both molecules are of interest as solvents in ambient-temperature lithium batteries. The solvent molecules were condensed onto the surface of an evaporated lithium film at 120 K, and spectra were collected as the sample was warmed in ca. 25 to 30-K increments. The reaction of either DMC or DEC with lithium was initiated at 180 K, a temperature much lower than their bulk melting temperatures, producing lithium methyl carbonate, methyllithium and lithium ethyl carbonate, and ethyllithium, respectively. At temperatures greater than 270−300 K, the lithium alkyl carbonates start to decompose with Li2O, elemental carbon, and alkyllithium as products on the surface. Both DMC and DEC are more reactive toward metallic Li than another carbonate solvent, propylene carbonate, which we have s...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.