Abstract

When a Ne:BF3 sample is passed through a long stainless steel deposition line before being frozen onto a cryogenic observation surface maintained at approximately 5 K, the infrared spectrum of the resulting deposit includes prominent absorptions assigned to BF2OH and weaker absorptions contributed by F311B–OH2. Pretreatment of the deposition line with isotopically substituted water leads to the appearance of absorptions of the O18- and D-substituted products. The assignments are supported by the results of ab initio calculations at several different levels and by a least-squares force constant fit to the infrared absorptions of the isotopomers of BF2OH. The thermochemistry of the reactions of BF3 and H2O to form F3B–OH2 and to form BF2OH+HF has been calculated at the G2 level. Although the heats of reaction calculated for 298 K somewhat favor formation of the complex, when the entropy is also considered the two reactions become more competitive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.