Abstract

The reaction mechanism of the gold(I)-phosphine-catalyzed hydroamination of 1,3-dienes was analyzed by means of density functional methods combined with polarizable continuum models. Several mechanistic pathways for the reaction were considered and evaluated. It was found that the most favorable series of reaction steps include the ligand substitution reaction in the catalytically active Ph3PAuOTf species between the triflate and the substrate, subsequent nucleophile attack of the N-nucleophile (benzyl carbamate) on the activated double bond, which is followed by proton transfer from the NH2 group to the unsaturated carbon atom. The latter step, the most striking one, was analyzed in detail, and a novel pathway involving tautomerization of benzyl carbamate nucleophile assisted by triflate anion acting as a proton shuttle was characterized by the lowest barrier, which is consistent with experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.