Abstract

GABAergic and glycinergic function is dependent on neuronal intracellular chloride. The neuron-specific electroneutral potassium (K<sup>+</sup>) and chloride (Cl<sup>-</sup>) cotransporter (KCC2), is a key regulator of neuronal Cl<sup>-</sup>, yet little is known about KCC2 regulation. Using yeast two-hybrid, we identified Protein Associated with Myc (PAM) as a binding partner of KCC2. The RCC1 (Regulator of Chromatin Condensation) domain of PAM binds to the carboxyl terminus of KCC2, as demonstrated through yeast two-hybrid and GST-pull-down assays. RCC1/PAM and full-length KCC2 coimmunoprecipitate following heterologous co-expression in HEK293 cells. Additionally, <sup>86</sup>Rb/K<sup>+</sup> uptake assays in this model system show that RCC1/PAM causes increased KCC2-mediated flux. After narrowing down RCC1/PAM binding to a 20 amino acid region on the KCC2 carboxyl terminus, we created a point mutant in this region to eliminate interaction between the KCC2 carboxyl terminus and RCC1/PAM. This same mutation abolishes N-ethylmaleimide activation of KCC2, suggesting that PAM plays a role in modulating KCC2 function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.