Abstract

The development of vaccines that target tumor antigens in cancer has proven difficult. A major reason for this is that T cells specific for tumor self-antigens and neoantigens are eliminated or inactivated through mechanisms of tolerance. Antigen fusion strategies which increase the ability of vaccines to stimulate T cells that have escaped tolerance mechanisms, may have a particular potential as immunotherapies. This review highlights antigen fusion strategies that have been successful in stimulating the induction of T-cell immunity against cancer and counteracting tumor-associated tolerance. In preclinical studies, these strategies have shown to improve the potency of vectored vaccines through fusion of tumor antigen to proteins or protein domains that increase CD4+ T-cell help, CD8+ T-cell responses or both the CD4+ and CD8+ T-cell responses. However, in clinical trials such strategies seem to be less efficient when provided as a DNA vaccine. The first clinical trial using a viral vectored fusion-gene vaccine is expected to be tested as a partner in a heterologous prime-boost regimen directed against cervical cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.