Abstract

Pattern classification methods are a crucial direction in the current study of brain–computer interface (BCI) technology. A simple yet effective ensemble approach for electroencephalogram (EEG) signal classification named the random electrode selection ensemble (RESE) is developed, which aims to surmount the instability demerit of the Fisher discriminant feature extraction for BCI applications. Through the random selection of recording electrodes answering for the physiological background of user-intended mental activities, multiple individual classifiers are constructed. In a feature subspace determined by a couple of randomly selected electrodes, principal component analysis (PCA) is first used to carry out dimensionality reduction. Successively Fisher discriminant is adopted for feature extraction, and a Bayesian classifier with a Gaussian mixture model (GMM) approximating the feature distribution is trained. For a test sample the outputs from all the Bayesian classifiers are combined to give the final prediction for its label. Theoretical analysis and classification experiments with real EEG signals indicate that the RESE approach is both effective and efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.