Abstract

Repeated measurements in quantum mechanics can freeze (the quantum Zeno effect) or enhance (the quantum anti-Zeno effect) the time-evolution of a quantum system. In this paper, we present a general treatment of the quantum Zeno and anti-Zeno effects for arbitrary driven open quantum systems, assuming only that the system–environment coupling is weak. In particular, we obtain a general expression for the effective decay rate of a two-level system subjected to arbitrary driving fields as well as periodic measurements. We demonstrate that the driving fields change the decay rate, and hence the quantum Zeno and anti-Zeno behavior, both qualitatively and quantitatively. We also extend our results to systems consisting of more than one two-level system, as well as a two-level system strongly coupled to an environment of harmonic oscillators, to further illustrate the non-trivial effect of the driving fields on the quantum Zeno and anti-Zeno effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.