Abstract

We carry out a numerical study of the quantum walk search algorithm of Shenvi, Kempe and Whaley Shenvi et al. (2003) and the factors that affect its efficiency in finding an individual state from an unsorted set. Previous work has focused purely on the effects of the dimensionality of the dataset to be searched. In the current paper we consider the effects of interpolating between dimensions, the connectivity of the dataset and the possibility of disorder in the underlying substrate: all these factors affect the efficiency of the search algorithm. We show that in addition to the strong dependence on the spatial dimension of the structure to be searched, there are also secondary dependencies on the connectivity and symmetry of the lattice, with greater connectivity providing a more efficient algorithm. We also show that the algorithm can tolerate a non-trivial level of disorder in the underlying substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.