Abstract

Quantum annealers are commercial devices that aim to solve very hard computational problems1, typically those involving spin glasses2,3. Just as in metallurgic annealing, in which a ferrous metal is slowly cooled4, quantum annealers seek good solutions by slowly removing the transverse magnetic field at the lowest possible temperature. Removing the field diminishes the quantum fluctuations but forces the system to traverse the critical point that separates the disordered phase (at large fields) from the spin-glass phase (at small fields). A full understanding of this phase transition is still missing. A debated, crucial question regards the closing of the energy gap separating the ground state from the first excited state. All hopes of achieving an exponential speed-up, compared to classical computers, rest on the assumption that the gap will close algebraically with the number of spins5–9. However, renormalization group calculations predict instead that there is an infinite-randomness fixed point10. Here we solve this debate through extreme-scale numerical simulations, finding that both parties have grasped parts of the truth. Although the closing of the gap at the critical point is indeed super-algebraic, it remains algebraic if one restricts the symmetry of possible excitations. As this symmetry restriction is experimentally achievable (at least nominally), there is still hope for the quantum annealing paradigm11–13.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.