Abstract

We consider the fundamental problem of "what makes atoms stick together in molecules, crystals, or clusters?" The Heitler and London paper (1927) on the hydrogen molecule marked a first attempt to discuss, in terms of quantum mechanics, the interaction of two atoms with unpaired spins. The aim of this note is to show how the primitive concepts used eighty years ago still retain a certain validity even in a much more general context. We consider in fact the interaction of two arbitrary systems, each with a resultant spin angular momentum, and show how the interaction energy depends on the scalar product of the two resultants. The actual nature of the two systems is irrelevant: they may be atoms, molecules, or ionic species of any kind each described by a wave function which may be, in principle, exact. This provides a first step in the formulation of any general theory of cohesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.