Abstract

ABSTRACT We study the behaviour of the dynamical and stellar mass inside the effective radius of early-type galaxies (ETGs) as a function of environment considering Newtonian dynamics, different surface-brightness profiles, different initial mass functions (IMF), and different redshift ranges. We use several samples of ETGs – ranging from 19 000 to 98 000 objects – from the ninth data release of the Sloan Digital Sky Survey. We assume that any difference between the dynamical and stellar mass is due to dark matter and/or a non-universal IMF. The main results, considering samples in the redshift range 0.0024 ≤ z ≤ 0.35, are as follows: (i) the amount of dark matter inside ETGs depends on the environment; (ii) ETGs in low-density environments span a wider dark matter range than ETGs in dense environments; (iii) the amount of dark matter inside ETGs in the most dense environments will be less than approximately 55–75 per cent of the dynamical mass; (iv) the accurate value of this upper limit depends on the impact of the IMF on the stellar mass estimation; (v) in the case of an ETG sample which is approximately complete for log(MVirial/MSun) > 10.5 and in the redshift range 0.04 ≤ z ≤ 0.08, we find that the amount of dark matter in the most dense environments will be less than approximately 60–65 per cent of the dynamical mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.