Abstract

We present a quantitative overhead analysis for effective task migration in biosensor networks. A biosensor network is the key technology which can automatically provide accurate and specific parameters of a human in real time. Biosensor nodes are typically very small devices, so the use of computing resources is restricted. Due to the limitation of nodes, the biosensor network is vulnerable to an external attack against a system for exhausting system availability. Since biosensor nodes generally deal with sensitive and privacy data, their malfunction can bring unexpected damage to system. Therefore, we have to use a task migration process to avoid the malfunction of particular biosensor nodes. Also, it is essential to accurately analyze overhead to apply a proper migration process. In this paper, we calculated task processing time of nodes to analyze system overhead and compared the task processing time applied to a migration process and a general method. We focused on a cluster ratio and different processing time between biosensor nodes in our simulation environment. The results of performance evaluation show that task execution time is greatly influenced by a cluster ratio and different processing time of biosensor nodes. In the results, the proposed algorithm reduces total task execution time in a migration process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.