Abstract
Galois connections were originally expressed in a contravariant form with transformations that reverse (rather than preserve) order. Nowadays its covariant form (as residuated maps) is more often used since it is more convenient; namely compositions of residuated maps are handled more easily. In this paper we show that this is not a serious disadvantage of the contravariant form (at least in the natural context for uniform structures, where we need it), by introducing an operation of composition in the complete lattice Gal(L, L) of all (contravariant) Galois connections in a complete lattice L, that allows us to work with Galois connections in the same way as one usually works with residuated maps. This operation endows Gal(L, L) with a structure of quantale whenever L is a locale, allowing the description of uniform structures in terms of Galois connections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.