Abstract

The subcritical reactor driven by external neutron source could apply as useful instrument for modern nuclear energy applications requiring high-level irradiation of different materials by the high-energy and high-intense neutron flux (e. g., nuclear waste transmutation, radiopharmaceutical production, etc.). The propagation of neutron pulses through the subcritical nuclear system was considered in the present paper. Simple homogeneous subcritical systems and a model of two-zone subcritical reactor were computationally investigated using Monte Carlo MCNP4c transport code. The propagation of one initial neutron pulse and series of one hundred neutron pulses through the presented subcritical nuclear models were simulated. In this study, the neutron multiplication factor, the neutron flux, the energy amplification factor, the total energy of neutrons in initial pulse, etc. were obtained and analyzed. The presented calculations have shown that the considered pulse subcritical systems can be successfully used as effective amplifiers of neutron flux from the initial source. The modeling results indicate that there is an achievement of a stable, high level of neutron flux caused by the accumulation of delayed neutrons from previous pulses in series of one hundred pulses for both homogeneous and heterogeneous systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.