Abstract
We determine all finite groups G such that the Loewy length (socle length) of the projective cover P(k G ) of the trivial kG-module k G is four, where k is a field of characteristic p > 0 and kG is the group algebra of G over k, by using previous results and also the classification of finite simple groups. As a by-product we prove also that if p = 2 then all finite groups G such that the Loewy lengths of the principal block algebras of kG are four, are determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.