Abstract

This study provides an analysis of the evolution of resurgence from 55 ka for the active volcanic island of Ischia, southern Italy, using a laccolith model proposed in previous studies. This paper explores the uplift phases, eruptive behavior, and associated seismic activity of Ischia Island, which are important issues as the island has a high volcanic risk. Through an analysis of stress and strain over time for laccolith pressurization, it is shown that during resurgence, Ischia Island has undergone flexural uplift and progressive fracturing and faulting of the shallow crust (2 km thick), with an increase in the laccolith’s volume of at least 80 km3 and an average magma influx of 0.015 m3 s−1. Different elastic and viscoelastic mechanisms are used to evaluate the modes of stress relaxation due to this laccolith pressurization phase. Stress relaxation can occur through uplift and seismicity, without eruption, or with eruption. It is also shown that large eruptions should be expected only for long-term uplift of the central part of Ischia Island (the Mount Epomeo block). In contrast, the occurrence of small effusive and explosive eruptions should involve the peripheral areas of the resurgent block, and these are more likely to occur in the near future than are large events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.