Abstract
Talc particles, the basic ingredient in different kinds of talc-based cosmetic and pharmaceutical products, pose a health risk to pulmonary and ovarian systems due to domestic and occupational exposures. Two types of talc nanoparticles depending on the source of geographical origin – indigenous- and commercial talc nanoparticles were assessed for their potential in vitro toxicity on A549 cells; along with indigenous conventionally used microtalc particles. Cell viability, determined through live/dead staining and 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, decreased as a function of concentration, origin and size of particles. Both varieties of talc nanoparticles differentially induced lipid peroxidation (LPO), which was correlated with the pattern of lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) generation, and glutathione (GSH) depletion. Relatively higher cytotoxicity of indigenous nanotalc could be attributed to its higher content of iron as compared to commercial nanotalc. The known scavenger of ROS, l-ascorbic acid significantly inhibited LPO induction due to talc particles. Data suggest that nanotalc toxicity on A549 cells was mediated through oxidative stress, wherein role of iron-mediated LPO was much pronounced in differential cytotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.