Abstract
The pressure propagation in high velocity compaction process is simulated based on the discrete element method in this paper. Because the full process is divided into elastic loading, plastic deformation and elastic unloading, the governing equations are established in three stages respectively. With the help of computing software PFC2D, the impacting force through different layers of powders can be obtained, which cannot be observed in experiment. The simulation results show obviously a delay phenomenon and serrate waves with different gradients in loading and unloading processes. Finally, the simulated low-level stress waves are compared with available experimental data, which are consistent with each other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.