Abstract
Despite chalcopyrite (CuFeS2) being one of the oldest known copper ores, it exhibits various properties that are still the subject of debate. For example, the relative concentrations of the ionic states of Fe and Cu in CuFeS2 can vary significantly between different studies. The presence of a plasmon-like resonance in the visible absorption spectrum of CuFeS2 nanocrystals has driven a renewed interest in this material over recent years. The successful synthesis of CuAl1−pFepS2 nanocrystals that exhibit a similar optical resonance has recently been demonstrated in the literature. In this study, we use density functional theory to investigate Fe substitution in CuAlS2 and find that the formation energy of neutral [FeCu]2++[CuAl]2− defect complexes is comparable to [FeAl]0 antisites when p≥0.5. Analysis of electron density and density of states reveals that charge transfer within these defect complexes leads to the formation of local Cu2+/Fe2+ ionic states that have previously been associated with the optical resonance in the visible absorption of CuFeS2. Finally, we comment on the nature of the optical resonance in CuAl1−pFepS2 in light of our results and discuss the potential for tuning the optical properties of similar systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.