Abstract

Gene-modified cell vaccines are the best way to achieve the immunotherapy for all types of acute leukemia. In this study, the recombinant eukaryotic expression vector (pDisplay-HSP70) of heat shock protein 70 (HSP70) of Bacille Calmette-Guérin (BCG) was constructed by amplifying the whole BCG HSP70 gene using polymerase chain reaction (PCR) and sub-cloning into the polyclone endonuclease sites in pDisplay. Then the HL-60 cell vaccine expressing the protein onto the cell surface was prepared by lipofectamine transfection and its anti-tumor effect and mechanism were further studied. Results showed that the fragment of BCG HSP70 was consistent with Mycobacterium tuberculosis HSP70 gene published in GeneBank. DNA sequencing showed that the recombinant vector was correctly constructed and named pDisplay-HSP70. After BCG HSP70 gene transfection, the yellow-green fluorescence on the HL-60 cells surface was observed under a fluorescence microscope. The immunogenicity of HSP70-transfected HL-60 cells exhibited upregulated proliferation of lymphocytes, increased cytokine secretion (IFN-γ) and enhanced killing activity. These results suggested that gene transfection of BCG HSP70 could significantly enhance the immunogenicity of HL-60 cells. It may be used as a suitable candidate gene-modified cell vaccine for cancer immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.