Abstract

The purpose of this work was to investigate the effect that changes in design and process variables had on the movement of particles around a fluidized bed coating apparatus. To measure the mean and variance of the particle cycle time distribution (CTD), the number of passages taken by a magnetic tracer particle through the spray zone was measured by a detector coil wound around the partition. The reproducibility of the measurement technique was tested by taking repeated measurements of the tracer particle movement, using similar bed operating conditions, and the method was found to give reproducible results. A series of experiments was carried out by varying operating conditions such as the partition gap, fluidizing air rate, and partition diameter and length, and measuring the change in the rate at which the tracer particle circulated in the coating device. The results of the experiments showed that, over the range of parameters tested in this work, the partition gap had the strongest influence on the rate of particle circulation. Moreover, for the 6-in.-diameter Wurster process used in the current work, the mean circulation time for the 1.1-mm-diameter Nu-Pareil particles was found to vary over the range of 2.2–10.4 sec. In addition, the mean and standard deviation of the CTD could be linearly correlated over a wide range of operating conditions, with a correlation coefficient of 0.80. Finally, an estimate of the variability in mass coating uniformity was made based on the results from the cycle time distributions. It was concluded that the effect of variability in the CTD could account for only a small fraction of the variability in the observed mass coating distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.