Abstract

A simple analytical model is proposed and shown to capture the essence of the direct containment heating phenomenon. The model is based on assuming thermal/chemical equilibrium in the melt dispersal (flow) process, and separation of the melt out of this ‘equilibrium steam’ in the intermediate compartment. The model reveals a natural scale (hence named the ‘DCH scale’) for the DCH phenomenon, and the results are in very good agreement with the Integral Effects Tests series. On this basis, reactor predictions can be made quite simply, provided that the DCH scale for the particular condition of interest is known. This prediction of DCH scale is also addressed by a scaling approach that is shown to be consistent with the experimental data. Finally, reactor predictions (of DCH loads) are also included in generalized terms convenient for use under a wide variety of conditions. In general, the results appear to be well within the structural capability of large dry containments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.