Abstract
We examine the predictability of private and public real estate returns using recursive, out-of-sample, linear and Markov switching models, employing a rich set of predictor variables. We find considerable improved predictive power compared to simple regression models, especially at the intermediate horizon. Next, we test whether such improved forecasting accuracy translates into a positive risk-adjusted out-of-sample performance by performing a recursive mean-variance portfolio allocation analysis. We observe significant improvements in realized Sharpe ratios and mean-variance utility scores, especially when employing Markov switching models and exploiting predictability at intermediate horizons. Furthermore, our results are robust to the inclusion of transaction costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.