Abstract

A numerical study of the dry reforming of methane is discussed by applying molten salt as the heat source. A tortuous array of reactors, a reactor with frustum shape and a change in the number of reformer beds immersed in the molten salt are studied. The first observation is that the temperature of the heat source does not drop significantly between the inlet and outlet. This property naturally leads to a methane conversion that is proportional to the length when the catalyst volume is fixed. For a tortuous shape with 12 reactors in series, 0.4 m long each, neither the molten salt temperature nor the methane conversion differed significantly between the first and last reactors. Compared to the gas-type heat source, the molten salt turns out to be a very powerful energy carrier. In addition, we briefly discuss the frustum reactor and the variation in the number of reformer beds immersed in molten salt keeping the amount of catalyst fixed. In general, for the frustum reactor the conversion increases as the radius of the feed input becomes smaller. Finally, the CH4 conversion decreases as the number of reformer bed increases for the variation of the number of reformer beds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.