Abstract

BackgroundThis study highlights the potential toxic effects of aluminum chloride and sodium fluoride (NaF), given to pregnant female rats, on the development of the brain neurotransmission systems in their offspring. Pregnant female rats received a daily dose of NaF (0.15 g/L) or AlCl3 (0.5 g/L) in the drinking deionized water, either separately or in combination with each other, starting from the 6th day of gestation till the end of the breastfeeding period. After weaning, the male offspring were divided into two subgroups; in the first one, the offspring continued to have the same treatments in their drinking water at the same dose levels, as were provided to the mothers, until the age of 70 days of postnatal life. In the second subgroup, the pups were provided with a drinking deionized water without the treatments for a similar period of time. At the end of the experimental period, the contents of the brain monoamine neurotransmitters, as well as the acetylcholinesterase (AChE) activity, were assessed in the cerebral cortex, hippocampus, and hypothalamus. In addition, the offspring were subjected to the exploratory behavioral test.ResultsThe results revealed that sodium fluoride and aluminum chloride induced sever perturbation and imbalance in the neurotransmission systems under investigation. The pattern of change and severity differed with the different brain areas. The combination of the two pollutants exerted general synergistic impacts with different specific response in the different brain area.ConclusionIt is concluded from this study that the exposure to sodium fluoride and aluminum chloride, either separately or in combination, induced profound disturbances in the transmission within the rat brain monoamine systems and subsequent undesirable impact on the animal’s behavioral aspects.

Highlights

  • This study highlights the potential toxic effects of aluminum chloride and sodium fluoride (NaF), given to pregnant female rats, on the development of the brain neurotransmission systems in their offspring

  • All chemicals used for the HPLC analyses employed for the estimation of the monoamines (Epinephrine -CAS Number: 51-43-4; Norepinephrine: CAS Number 51-41-2; Serotonin: CAS Number: 50-67-9; Dopamine CAS Number: 62-31-7) as well as those used for the QuantiChrom AChE (DACE-100) assay kits required to measure the activity of acetylcholinesterase (AChE) were purchased from Sigma-Aldrich Company

  • The daily treatments were deionized drinking water, 0.15 g sodium fluoride (NaF, 0.15 g/L added to the drinking deionized water) according to He and Chen (2006), 0.5 g aluminum chloride (AlCl3, 0.5 g/ L added to the drinking deionized water) according to Fulton and Jeffery (1990), and a combination of aluminum and fluoride with the same concentrations added to the drinking deionized water, respectively

Read more

Summary

Introduction

This study highlights the potential toxic effects of aluminum chloride and sodium fluoride (NaF), given to pregnant female rats, on the development of the brain neurotransmission systems in their offspring. Pregnant female rats received a daily dose of NaF (0.15 g/L) or AlCl3 (0.5 g/L) in the drinking deionized water, either separately or in combination with each other, starting from the 6th day of gestation till the end of the breastfeeding period. Kinawy The Journal of Basic and Applied Zoology (2019) 80:17 to its absorption and accumulation in different brain regions. This will lead to cerebral damage and appearance of neurological disorders later in life (Saunders, Liddelow, & Dziegielewska, 2012)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.