Abstract

Deep tissue injuries (DTIs) are a serious type of pressure injuries that mainly occur at the bony prominences and can develop rapidly, making prevention and treatment more difficult. Although consistent research efforts have been made over the years, the cellular and molecular mechanisms contributing to the development of DTIs remain unclear. More recently, ferroptosis, a novel regulatory cell death (RCD) type, has been identified that is morphological, biochemical and genetic criteria distinct from apoptosis, autophagy and other known cell death pathways. Ferroptosis is characterized by iron overload, iron-dependent lipid peroxidation and shrunken mitochondria. We also note that some of the pathological features of DTI are known to be key features of the ferroptosis pathway. Numerous studies have confirmed that ferroptosis may be involved in chronic wounds, including DTIs. Here, we elaborate on the basic pathological features of ferroptosis. We also present the evidence that ferroptosis is involved in the pathology of DTIs and highlight a future perspective on this emerging field, desiring to provide more possibilities for the prevention and treatment of DTIs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.