Abstract

Sutures are considered as surgical materials that form excellent surfaces to integrate the postoperative parts of the body. These materials present suitable platforms for potential bacterial penetrations. Therefore, coating these biomedical materials with biocompatible compounds is seen as a potential approach to improve their properties while avoiding adverse effects. The aim of this study was to evaluate Arthrospira platensis, Haematacoccus pluvialis, Chlorella minutissima, Botyrococcus braunii, and Nostoc muscorum as potential surgical suture coating materials. Their crude extracts were absorbed into two different sutures as poly glycolic (90%)-co-lactic acid (10%) (PGLA) and poly dioxanone (PDO); then, their cytotoxic effects and antibacterial activities were examined. Both N. muscorum-coated sutures (PGLA and PDO) and A. platensis-coated (PGLA and PDO) sutures did not induce any toxic effect on L929 mouse fibroblast cells (>70% cell viability). The highest antibacterial activity against Staphylococcus aureus was achieved with N. muscorum-coated PGLA and A. platensis-coated PGLA at 11.18±0.54 mm and 9.52±1.15 mm, respectively. These sutures were examined by mechanical analysis, and found suitable according to ISO 10993-5. In comparison with the commercial antibacterial agent (chlorohexidine), the results proved that N. muscorum extract can be considered as the most promising suture coating material for the human applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.