Abstract

To investigate the potential effect of proanthocyanidins (PA), a natural cross-linker, on the stability of resin-dentin bonds against thermal cycling. Ten percent, 15% PA-based preconditioners, and 5% glutaraldehyde were prepared for the transient pretreatment of demineralized dentin before bonding. Specimens without pretreatment were used as negative controls (n = 4 teeth for each group). Microtensile bond strength, failure mode, micromorphologies of resin-dentin interface and the collagen degradation of bonded specimens after thermal cycling were evaluated. After thermal cycling, the microtensile bond strength values of resin-dentin bond in groups pretreated with 15% PA for 120 s and 60 s [(23.09 ± 3.19) and (21.88 ± 3.49) MPa] were significantly higher than that in control group [(15.47 ± 3.78) MPa] (P < 0.05). Mixed fractures were the most prevalent failure mode. Specimens with pretreatment presented compact hybrid layer, while some narrow gaps were found in hybrid layer of non-treated specimens. Collagen biodegradation rates in groups with pretreatment were significantly lower than that in control group (P < 0.05). Among them, specimens pretreated by 15% PA preconditioner for 120 s exhibited the lowest biodegradation rates [(0.316 ± 0.019) mg/g]. The application of natural cross-linker PA on demineralized dentin reduced the bond degradation against aging by thermal cycling, and can be helpful to create more durable bonds to dentin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.