Abstract
MiRNAs are small non-coding RNAs that are ordinarily involved in modulating mRNAs and stem cell differentiation. 3D nanofibrous scaffolds have an important role in the differentiation of stem cells due to their similarity to the extracellular matrix (ECM). In the present study, we tried to introduce a new approach to guiding the differentiation of conjunctiva mesenchymal stem cells (CJMSCs) into photoreceptor-like cells by hsa-miR-9-1 delivery on both 2D and 3D substrates.First, the CJMSCs were transduced by a lentiviral vector carrying miR-9 (pCDH + hsa-miR-9-1) and then cell transduction efficacy verified by using fluorescent microscopy, flow cytometry, and qPCR analyses. Silk Fibroin-poly-L-lactic acid (SF-PLLA) scaffold was fabricated by the electrospinning technique while the scaffold characteristics including morphology, chemical properties, and biocompatibility were evaluated by SEM, FTIR, and MTT assays, respectively. Then, the miR-9-CJMSCs were seeded on both TCPS and the scaffold; photoreceptor gene and protein expressions were evaluated by RT-qPCR and immunostaining after 14 and 21 days of transduction.More than 80% of CJMSCs were transduced and miR-9 expression was significantly higher in miR-9-CJMSCs compared with empty vector (EV)-CJMSCs. SEM and FTIR confirmed the fabrication of the SF/PLLA hybrid structure. RT-qPCR and immunostaining analyses showed that the specific photoreceptor genes and proteins were expressed in miR-9 transduced CJMSCs. Mir-9 induced CJMSCs into photoreceptor-like cells in a time-dependent manneron on both TCPS and nanofibrous scaffold.We have proved that hsa-miR-9-1 has the potency to guide the photoreceptor differentiation of mesenchymal stem cells and promote retinal regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.