Abstract

Surface active substances (SAS) have the potential to form films at different interfaces, consequently influencing the interfacial properties of atmospheric particulate matter (PM). They can be derived from both human activities and natural processes and can be found in an indoor and outdoor environment. This paper's fundamental question is the possible role of the SAS in stabilizing respiratory aerosols in the closed space. In that context, we discuss results of preliminary measurements of the SAS and dissolved organic carbon (DOC) concentrations in the water-soluble fractions of PM2.5 and PM10 that were sampled simultaneously in primary school inside and outside of the building. The concentrations of SAS were determined using highly sensitive electrochemical measurements. It was observed that SAS and DOC concentrations have been enhanced indoor in both PM fractions. Consistent with these results, a discussion arises on the possibility that SAS could play a crucial role in respiratory droplet dispersion as stabilizers, especially in a closed space. At the same time, we assume that they could prolong the lifetime of respiratory aerosols and as well viability of some (possible SARS-CoV-2) virus inside of the droplets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.