Abstract
In the masticatory system, activities of muscles are the main source of force. The daily activity of the jaw muscle is a measure of the total daily loading of the tissues involved. This article gives an overview on the recent assessments of the physiology and ontogeny of the daily use of the jaw muscles. Variations in the characteristics of daily activity could be linked to differences in the types of fibers composing the muscles as well as to the properties of the underlying bone, although these relationships are not absolute. Experimental decrease of the hardness of foods eaten by rats and rabbits showed a significant decrease in the number of daily bursts of feeding. These reductions in daily muscular activity were accompanied by higher mineralization of bone and by a transition toward "faster" fiber types in the muscles. It was revealed in rabbits that the characteristics of the daily activities of muscles (total duration of activity, number and lengths of bursts) were not altered during the transition from suckling to chewing and remained largely unaffected during further postnatal development. These results suggest that, despite large anatomical and functional changes, the average daily load on the jaw muscles by the masticatory system appears to be established before chewing develops and remains largely unchanged all the way through development. Whenever the daily muscular activity changes, this seems to have a significant effect on the properties of the tissues involved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.