Abstract

Most of the social sciences, including psychology, economics and subjective social network theory, are modeled on the individual, leaving the field not only a-theoretical, but also inapplicable to a physics of hybrid teams, where hybrid refers to arbitrarily combining humans, machines and robots into a team to perform a dedicated mission (e.g., military, business, entertainment) or to solve a targeted problem (e.g., with scientists, engineers, entrepreneurs). As a common social science practice, the ingredient at the heart of the social interaction, interdependence, is statistically removed prior to the replication of social experiments; but, as an analogy, statistically removing social interdependence to better study the individual is like statistically removing quantum effects as a complication to the study of the atom. Further, in applications of Shannon’s information theory to teams, the effects of interdependence are minimized, but even there, interdependence is how classical information is transmitted. Consequently, numerous mistakes are made when applying non-interdependent models to policies, the law and regulations, impeding social welfare by failing to exploit the power of social interdependence. For example, adding redundancy to human teams is thought by subjective social network theorists to improve the efficiency of a network, easily contradicted by our finding that redundancy is strongly associated with corruption in non-free markets. Thus, built atop the individual, most of the social sciences, economics and social network theory have little if anything to contribute to the engineering of hybrid teams. In defense of the social sciences, the mathematical physics of interdependence is elusive, non-intuitive and non-rational. However, by replacing determinism with bistable states, interdependence at the social level mirrors entanglement at the quantum level, suggesting the applicability of quantum tools for social science. We report how our quantum-like models capture some of the essential aspects of interdependence, a tool for the metrics of hybrid teams; as an example, we find additional support for our model of the solution to the open problem of team size. We also report on progress with the theory of computational emotion for hybrid teams, linking it qualitatively to the second law of thermodynamics. We conclude that the science of interdependence

Highlights

  • One of the major conclusions from modern game theorists, based on findings in the laboratory, is that the societies that cooperate have better social welfare [[1], p. 7–8]

  • By using Von Neumann’s model of quantum interference and Bohr, we review our advances: by taking limits, we derived a quantitative measure in the limit of what constitutes a perfect team, another for the worst team, and another we found as a relative metric of team performance modeled after Kullback– Leibler divergence where redundancy in teams is characterized by the divergence in team size from comparable free market teams [11]

  • We found that economic freedom and corruption were inversely correlated significantly (r = −0.77, p < 0.025), indicating that an increase in freedom was associated with a decrease in corruption

Read more

Summary

Introduction

One of the major conclusions from modern game theorists, based on findings in the laboratory, is that the societies that cooperate have better social welfare [[1], p. 7–8]. 29); and central decision-making promotes corruption [4]. We have concluded that corruption is more likely unchecked in countries, businesses and teams that impede the interdependence spontaneously arising among citizens in a nation with functional checks and balances; China is an example of the corruption that occurs from blocking interdependence (e.g., censorship), replaced by central decision-making [6]: Much about the Hong’ao dump was not as it appeared on paper, a reconstruction of the disaster shows. Free movement is impeded by barriers established by centralized commands, decisions or procedures (e.g., Dodd-Frank rules in the USA), authoritarian governments (e.g., China), or violent gangs (e.g., Palestine’s Hamas; Lebabon’s Hezbollah; the US’s Mara Salvatrucha)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.