Abstract
We present density functional theory (DFT) calculations of the electronic and magnetic properties of fluorine adatoms on a single side of a graphene monolayer. By extrapolating the results, the binding energy of a single fluorine adatom on graphene in the dilute limit is calculated. Our results confirm that the finite-size error in the binding energy scales inversely with the cube of the linear size of the simulation cell. We establish relationships between stability and CF bond nature, diffusion of fluorine adatoms and total magnetization in different configurations of adatoms. For single-side fluorination, sp2.33 is the maximum p-content re-hybridization found in the CF bond. We show that semilocal DFT cannot predict correctly the magnetic properties of fluorinated graphene and a higher level theory, such as DFT + U is needed. The results indicate a tendency of graphene to reduce the imbalance between adsorption on the two sublattices, and therefore total magnetization, through low-energy-barrier pathways on a time scale of ∼10 ps at room temperature. The thermodynamically favored arrangements are those with the smallest total magnetization. Indeed, the electronic structure is intimately related to the magnetic properties and changes from semi-metallic to p-type half-metallic or semiconducting features, depending on the adatoms arrangement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.