Abstract

The Helix aspersa Phe-Met-Arg-Phe-amide (FMRFamide)-gated sodium channel is formed by homomultimerization of several FMRFamide-activated Na+ channel (FaNaCh) proteins. FaNaCh is homologous to the subunits that compose the amiloride-sensitive epithelial sodium channel, to Caenorhabditis elegans degenerins, and to acid-sensing ionic channels. FaNaCh properties were analyzed in stably transfected human embryonic kidney cells (HEK-293). The channel was functional with an EC50 for FMRFamide of 1 microM and an IC50 (25 degreesC) for amiloride of 6.5 microM as assessed by 22Na+ uptake measurements. The channel activity was associated with the presence of a protein at the cell surface with an apparent molecular mass of 82 kDa. The 82-kDa form was derived from an incompletely glycosylated form of 74 kDa found in the endoplasmic reticulum. Formation of covalent bonds between subunits of the same complex were observed either after formation of intersubunit disulfide bonds following cell homogenization and solubilization with Triton X-100 or after use of bifunctional cross-linkers. This resulted in the formation of covalent multimers that contained up to four subunits. Hydrodynamic properties of the solubilized FaNaCh complex also indicated a maximal stoichiometry of four subunits per complex. It is likely that epithelial Na+ channels, acid-sensing ionic channels, degenerins, and the other proteins belonging to the same ion channel superfamily also associate within tetrameric complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.