Abstract

We propose a new method for generating equilibrium models of spherical systems of collisionless particles that are finite in extent, but whose central regions resemble dark matter halos from cosmological simulations. This method involves iteratively removing unbound particles from a Navarro-Frenk-White profile truncated sharply at some radius. The resulting models are extremely stable, and thus provide a good starting point for N-body simulations of isolated halos. We provide a code to generate such models for NFW and a variety of other common density profiles. We then develop an analytic approximation to this truncated distribution function. Our method proceeds by analogy with the King model, truncating and shifting the original distribution function of an infinitely extended Navarro-Frenk-White profile in energy space. We show that the density profiles of our models closely resemble the tidally truncated density profiles seen previously in studies of satellite evolution. Pursuing this analogy further with a series of simulations of tidal mass loss, we find that our models provide a good approximation to the full distribution function of tidally stripped systems, thus allowing theoretically motivated phase-space calculations for such systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.