Abstract

When exposed to certain stimuli, phagocytes (including neutrophils, macrophages and eosinophils) undergo marked changes in the way they handle oxygen. Firstly, their rate of oxygen uptake increases greatly. This is accompanied by (i) the production of large amounts of superoxide and hydrogen peroxide and (ii) the metabolism of large quantities of glucose through the hexose monophosphate shunt. We now know that the oxygen used is not for respiration but for the production of powerful microbiocidal agents downstream of the initial production of superoxide. Concomitantly, glucose is oxidised through the hexose monophosphate shunt to re-generate the NADPH that has been consumed through the reduction of molecular oxygen to generate superoxide.This phagocyte respiratory burst is generated by an NADPH oxidase multi-protein complex that has a catalytic core consisting of membrane-bound gp91phox (CYBB) and p22phox (CYBA) sub-units and cytosolic components p47phox (NCF1), p67phox (NCF2) and p40phox (NCF4). Finally, another cytosolic component, the small G-protein Rac (Rac2 in neutrophils and Rac1 in macrophages) is also required for full activation. The importance of the complex in host defence is underlined by chronic granulomatous disease, a severe life-limiting immunodeficiency caused by mutations in the genes encoding the individual subunits.In this review, I will discuss the experimental evidence that underlies our knowledge of the respiratory burst, outlining how elegant biochemical analysis, coupled with study of patients deficient in the various subunits has helped elucidate the function of this essential part of innate immunity. I will also discuss some exciting recent studies that shed new light on how the abundance of the various components is controlled. Finally, I will explore the emerging role of reactive oxygen species such as superoxide and hydrogen peroxide in the pathogenesis of major human diseases including auto-inflammatory diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.