Abstract

This paper focuses on using gas turbines in various industries, particularly aviation, due to their unique power-to-weight ratio. It provides a detailed description of how gas turbines operate based on the thermodynamic Brayton cycle, which includes compressors, combustors, and power turbines. Additionally, the paper analyses both ideal and realistic cycles of gas turbines. Despite numerous advantages, gas turbines have limitations, such as high fuel consumption. However, technological advancements have led to the development of more efficient and quieter gas turbines. The paper explains the classification of jet engines, including turbojets, turboprops, and turbofans, each with specific applications. Moreover, the paper discusses the efforts to reduce the use of fossil fuels in aviation due to the increasing awareness of the impact of climate change. Scientists and engineers are exploring substitute fuels and materials and developing gas turbine systems that maximize work generated with minimal combustion; thus, this paper also highlights the importance of developing more efficient and environmentally friendly gas turbines to reduce the industry's carbon footprint while maintaining their productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.