Abstract

Ensiling is a microbial-driven process used to preserve fresh forage in bio-refinery and animal production. The biochemical changes that ensue during ensiling have aided the search for new silage additives, emphasizing the potential of certain microbial strains that are more efficient in biopreservation. Lactic acid bacteria (LAB) species are widely recognized for their varied application as additives in the fermentation of crops or forage biomasses during ensiling. However, inconsistency in silage quality in recent times could be interpreted by the lack of information on gene expression and molecular mechanisms of microbiota involved in silage production. Modern research has focused on unraveling nutrient-rich animal feed with improved LAB inoculants. Therefore, this review elucidates the role of LAB inoculants in silage production as well as the modern biotechnology approaches, including metabolomics, proteomics, metagenomics, genomics, transcriptomics, and genetic manipulation, which are powerful tools for identifying, improving, and developing high-performance LAB strains. In addition, the review highlighted the trends and future perspectives of LAB development for silage improvement, pertinent for animal feed breakthroughs in sustainable agriculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call