Abstract

In order to improve the performance of a mini-type air-cooled diesel engine in terms of the overall efficiency and engine emissions, a swirl chamber of a variable cross-section dual-channel model was developed. This study proposed nine turbulent swirl chambers with a variable cross-section for a dual-channel combustion solution, which applied a dual-channel cross-section to the insert between the original swirl chamber and the main chamber. Model-based design, simulation and experiments were applied as a feasible approach to address this issue to find out the influence of the dual-channel inclination angle and divergence angle on the swirl rate in the swirl chamber, the power and the emissions performance, including the fuel efficiency. By comparing the tests, the performance of the diesel engine with a variable cross-section dual-channel swirl chamber was superior to the original one with a single channel in terms of the swirl rate, fuel consumption rate and emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.