Abstract
We develop a novel methodology based on the marriage between the Bhattacharyya distance, a measure of similarity across distributions of random variables, and the Johnson–Lindenstrauss Lemma, a technique for dimension reduction. The resulting technique is a simple yet powerful tool that allows comparisons between data-sets representing any two distributions. The degree to which different entities, (markets, universities, hospitals, cities, groups of securities, etc.), have different distance measures of their corresponding distributions tells us the extent to which they are different, aiding participants looking for diversification or looking for more of the same thing. We demonstrate a relationship between covariance and distance measures based on a generic extension of Stein’s Lemma. We consider an asset pricing application and then briefly discuss how this methodology lends itself to numerous market–structure studies and even applications outside the realm of finance / social sciences by illustrating a biological application. We provide numerical illustrations using security prices, volumes and volatilities of both these variables from six different countries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.