Abstract

Quantum computing is the grand challenge of the 21st century and is poised to revolutionizes our daily lives on a nearly unfathomable level. To truly understand the impact, we must first build a universal, fully error corrected machine capable of exploring the application space envisioned by both academic and industry. Numerous pathways have been identified and demonstrated to fabricate single, unique qubits using a myriad of platforms (superconducting, ions, nanoparticles, photons, etc…). However, it is now widely accepted that a truly useful quantum computer will require millions of interconnected, identical qubits to perform fully error corrected, general purpose calculations. To that end, photon-based qubits offer a path to such a general-purpose machine by leveraging the mature silicon photonics high-volume manufacturing ecosystem. Creating quantum devices from silicon photonics components requires patterning innovation to bring leading-edge nanolithography to near macroscopic scale, a unique challenge for an industry where the future relies on progressive device shrink.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.