Abstract

Background.Polycyclic aromatic hydrocarbons (PAHs) emitted from combustion sources are known to be mutagenic, with more potent species also being carcinogenic. Previous studies show that PAHs can undergo complex transformations both in the body and in the atmosphere, yet these transformation processes are generally investigated separately.Objectives.Drawing from the literature in atmospheric chemistry and toxicology, we highlight the parallel transformations of PAHs that occur in the atmosphere and the body and discuss implications for public health. We also examine key uncertainties related to the toxicity of atmospheric oxidation products of PAHs and explore critical areas for future research.Discussion.We focus on a key mode of toxicity for PAHs, in which metabolic processes (driven by cytochrome P450 enzymes), leads to the formation of oxidized PAHs that can damage DNA. Such species can also be formed abiotically in the atmosphere from natural oxidation processes, potentially augmenting PAH toxicity by skipping the necessary metabolic steps that activate their mutagenicity. Despite the large body of literature related to these two general pathways, the extent to which atmospheric oxidation affects a PAH’s overall toxicity remains highly uncertain. Combining knowledge and promoting collaboration across both fields can help identify key oxidation pathways and the resulting products that impact public health.Conclusions.Cross-disciplinary research, in which toxicology studies evaluate atmospheric oxidation products and their mixtures, and atmospheric measurements examine the formation of compounds that are known to be most toxic. Close collaboration between research communities can help narrow down which PAHs, and which PAH degradation products, should be targeted when assessing public health risks. https://doi.org/10.1289/EHP9984

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.